易教网
易教网分享高考家教教学教案:黄金数与优选法
家教首页>兰州家教 >高考资讯

易教网分享高考家教教学教案:黄金数与优选法

更新时间:2013-09-16

     高三数学教案 黄金数与优选法

     “黄金数”与优选法

      两千多年前,古希腊数学家欧多克斯发现:如果将一条线(AB)分割成大小两段(AP、PB),若小段与大段的长度之比恰好等于大段的长度与全长之比的话,那么这一比值等于0.618…,用式子表示就是:(PB)/(AP)=(AP)/(AB)=0.618……。

      有趣的是,这个数字在自然界和人们生活中到处可见:人们的肚脐是人体总长的黄金分割点,人的膝盖是肚脐到脚跟的黄金分割点。大多数门窗的宽长之比也是0.168…;有些植茎上,两张相邻叶柄的夹角是137度28',这恰好是把圆周分成1:0.618……的两条半径的夹角。据研究发现,这种角度对植物通风和采光效果最佳。

      建筑师们对数学0.168…特别偏爱,无论是古埃及的金字塔,还是巴黎的圣母院,或者是近世纪的法国埃菲尔铁塔,都有与0.168…有关的数据。人们还发现,一些名画、雕塑、摄影作品的主题,大多在画面的0.168…处。艺术家们认为弦乐器的琴马放在琴弦的0.168…处,能使琴声更加柔和甜美。

      数字0.168…更为数学家所关注,它的出现,不仅解决了许多数学难题(如:十等分、五等分圆周;求18度、36度角的正弦、余弦值等),而且还使优选法成为可能。优选法是一种求最优化问题的方法。如在炼钢时需要加入某种化学元素来增加钢材的强度,假设已知在每吨钢中需加某化学元素的量在1000—2000克之间,为了求得最恰当的加入量,需要在1000克与2000克这个区间中进行试验。通常是取区间的中点(即1500克)作试验。

      然后将试验结果分别与1000克和2000克时的实验结果作比较,从中选取强度较高的两点作为新的区间,再取新区间的中点做试验,再比较端点,依次下去,直到取得最理想的结果。这种实验法称为对分法。但这种方法并不是最快的实验方法,如果将实验点取在区间的0.618处,那么实验的次数将大大减少。这种取区间的0.618处作为试验点的方法就是一维的优选法,也称0.618法。实践证明,对于一个因素的问题,用“0.618法”做16次试验就可以完成“对分法”做2500次试验所达到的效果。因此大画家达•芬奇把0.618…称为黄金数。

最新文章
  1. 给不听话的小孩子打针的小视频
  2. 孩子不听话要挨打怎么办
  3. 准高三生:调节好情绪 复习更高效
  4. 孩子多动症在学校不听话
  5. 初中生如何沟通协调家庭成员之间的矛盾(如何缓解和家长的矛盾)
  6. 孩子习惯养成表,最全小学习惯养成一览表,一错毁终身
  7. 骗了家长十几年的谎言!给孩子买这些东西,花冤枉钱,还害了孩子!
  8. 家长的焦虑对孩子的影响
  9. 做好孩子坚强后盾 高三家长应做哪些准备
  10. 四类考生适合复读 四类考生不宜复读
最新教员
搜索教员
搜索

数学 语文 英语 物理 历史 钢琴 兰州大学 西北民族大学 兰州理工大学 兰州交通大学